Test 2 Group A Data Science

UF ID:

Name:

- State any simple, reasonable assumption used to arrive at your answer.
- An 'yes' or 'no' answer without reasoning is worth 0 points.
- Zero points if the writing is hard to decipher. Use a black pen if in doubt.

1 Regression ${ }^{3,3+21]}$

a Compute the best linear polynomial fit to the data

$$
\begin{equation*}
\left(x_{i}, y_{i}\right)_{i=0,1,2}=(-1,-1),(0,0),(1,-1) \tag{1}
\end{equation*}
$$

Show the linear equation to be solved.
b Show the least squares reformulation and solve for linear approximation.
c Draw the points and the solution.

2 K-means ${ }_{[2+2+2+2]}$

a In the Initialization shown below, • are the initial centers and o the 1 dimensional data points:
$\bigcirc \quad-\quad \bullet \quad 0$.
Show and explain the steps of one k-means iteration by minimally adding to the three diagrams below (you can add stages or need not use all, but display only one step of the iteration per drawing!)
$0 \quad 0$
$0 \quad 0$
b In one or two sentences, what is a Voronoi Diagram? Show the Voronoi Diagram in the Initialization (2).
c There are three clusters of points that each fit inside a circle and no circles overlap. If you choose $\mathrm{k}=3$ and run the generic k -means algorithm sufficiently long, will k-means find an optimal clustering? Explain.
d Will k-means with Euclidean distance be able to separate the two concentric, orange and blue groups below? Explain why or why not.

3 Dimension reduction ${ }_{[2+2+2+2]}$

Use your knowledge of the relationship between the singular value decomposition of a matrix A and the eigendecomposition of $M:=A A^{T}$ to answer the following.
a Applying the principal component analysis (PCA) using SVD to a matrix of data where all entries of one column are zero, one singular value is zero. Explain.
b Compute the singular values of

$$
A:=\left[\begin{array}{cc}
2 & 2 \tag{5}\\
-1 & 1
\end{array}\right]
$$

c How can one decide in practice how many principle components to retain for a learning application?
d Will PCA dimension reduction from \mathbb{R}^{2} to \mathbb{R}^{1} keep the orange and blue data clusters below separated? Explain why or why not.

4 Learning ${ }^{[2+1+1+1+1]}$

A computer program is said to learn from experience E with respect to some task T and some performance measure P if its performance on T , as measured by P , improves with experience E. Note: To obtain points you must give a short explanation (one sentence or less).
a To predict weather based on historical weather data what is a good choice for E and T?
b To predict whether or not it will be raining at 5 pm tomorrow would you choose a learning algorithm that performs classification or one that performs regression?
c Suppose you are working on stock market prediction and would like to predict the price of a particular stock tomorrow (measured in dollars). Would you treat this as a classification or a regression problem?
d Would you use supervised or unsupervised learning to predict the gender of a new manuscript's author, based on 50 articles written by male authors, and 50 articles written by female authors?
e Would you use supervised or unsupervised learning to identify schools of thought in a collection of 1000 essays written on the US Economy?

5 Large data ${ }_{\text {॥ }}$

a What problem does MinHash solve?

6 Random Walk ${ }_{[1+1+2]}$

a Draw the directed graph of a random walk with equal probablilities that connects node

$$
\begin{aligned}
& A \text { to } B, C \\
& B \text { to } C \\
& C \text { to } A
\end{aligned}
$$

b Write the matrix of the corresponding Markov process.
c What is the steady state of Markov process?

7 Support Vector Machine (SVM) ${ }^{[2+1]}$

a Specify a simple function for the kernel trick so that a SVM can separate the set of \bullet from the set of o :

0

- •
b Draw the function on the data set.

8 Perceptron ${ }^{2+1+2]}$

A multi-layer perceptron neural net consists of 2 input nodes x_{1} and x_{2}, a hidden layer of 2 nodes y_{1} and y_{2} and an output layer of 1 node z. The initial weights are $w\left(x_{1}, y_{1}\right)=1, w\left(x_{1}, y_{2}\right)=0, w\left(x_{2}, y_{1}\right)=.5, w\left(x_{2}, y_{2}\right)=.5, w\left(y_{1}, z\right)=1$, $w\left(y_{2}, z\right)=1$. The target (actual) value is 1 . The input values are $x_{1}=1$ and $x_{2}=0$.
a Draw the perceptron (nodes and directed edges). For $i, j \in\{1,2\}$ label the nodes x_{i}, y_{i}, z and add the weights.
b Perform one forward pass of the neural net to compute the predicted value of the output node.
c Perform one step of backpropagation with learning rate 0.05 to reduce the error.

